

Edition 1.0 2023-11

TECHNICAL SPECIFICATION

Distributed energy resources connection with the grid – Part 3: Additional requirements for stationary battery energy storage system

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 29.240.01 ISBN 978-2-8322-7667-9

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	REWORD		4
1	Scope		6
2	Normati	ve references	6
3	Terms a	nd definitions, abbreviated terms and symbols	6
_		rms and definitions	
		breviated terms and symbols	
	3.2.1	Abbreviated terms	
	3.2.2	Symbols	
4		ments for distributed BESS	
-	•	eneral	
		onnection scheme	
		noice of switchgear	
	4.3.1	General	
	4.3.2	Interface switch	
		ormal operating range	
	4.4.1	General	
	4.4.2	Operating frequency range	
	4.4.3	Operating voltage range	
	4.5 lm	munity to disturbances	
	4.5.1	General	
	4.5.2	Rate of change of frequency (ROCOF) immunity	12
	4.5.3	Under voltage ride through (UVRT) requirements	12
	4.5.4	Over voltage ride through (OVRT) requirements	12
	4.5.5	Rapid phase angle change immunity	12
	4.6 Ac	tive power response to frequency deviation	13
	4.6.1	General	13
	4.6.2	Active power response to over frequency	14
	4.6.3	Active power response to underfrequency	14
	4.7 Po	wer response to voltage changes	
	4.7.1	General	
	4.7.2	Voltage support by reactive power	
	4.7.3	Reactive power control modes	
	4.7.4	Voltage related active power control	
	4.7.5	Voltage related reactive power response	
	4.7.6	Additional reactive current requirements on BESS	
		AC and power quality	
	4.8.1	General	
	4.8.2	Direct current (DC) injection	
		rerface protection	
	4.9.1	General	
	4.9.2	Requirements on voltage and frequency protection	
	4.9.3	Means to detect islanding situation	
	4.9.4	Digital input to the interface protection	
		onnection and starting to generate electrical power	
	4.10.1	General	
	4.10.2	Connection of BESS	
	4.10.3	Auto reclose of distribution lines	17

4.10.4	Black start capability and intentional islanding control	17			
4.11 Cea	sing and reduction of active power on set point	17			
4.12 Ren	note information exchange	17			
4.12.1	General	17			
4.12.2	Monitoring and control	18			
4.12.3	Communication	18			
5 Conforma	ance tests	18			
Annex A (norn	native) Operating frequency range	19			
Annex B (norn	native) Operating voltage range	20			
	native) Summary of power thresholds to be defined by individual	21			
	Bibliography				
Figure 1 – Exa	ample of the interconnection interface concept	8			
Figure 2 – Typ modes under	oical power-frequency response curve for BESS charging and discharging operating frequency range	13			
	ample of reactive power capability range of BESS in per unit at nominal	15			
Figure 4 – Typ	pical voltage related active power regulation of BESS	16			
Table 1 – Ope	rating frequency requirements of BESS	11			
Table 2 – Ope	rating voltage requirements of BESS with LV distribution network	12			
Table A.1 – C	ontinuous operating frequency range	19			
Table A.2 – Limited operating frequency range					
Table A.3 – Limited charging/discharging time					
	ontinuous operating POC voltage range				
	mited operating voltage range				

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DISTRIBUTED ENERGY RESOURCES CONNECTION WITH THE GRID -

Part 3: Additional requirements for stationary battery energy storage system

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TS 62786-3 has been prepared by IEC Technical Committee 8: System aspects of electrical energy supply. It is a Technical Specification.

The text of this Technical Specification is based on the following documents:

Draft	Report on voting
8/1663/DTS	8/1680/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Specification is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 62786 series, published under the general title *Distributed energy resources connection with the grid*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

DISTRIBUTED ENERGY RESOURCES CONNECTION WITH THE GRID -

Part 3: Additional requirements for stationary battery energy storage system

1 Scope

This part of IEC 62786, which is a Technical Specification, provides principles and technical requirements for interconnection of distributed Battery Energy Storage System (BESS) to the distribution network. It applies to the design, operation and testing of BESS interconnected to distribution networks. It includes the additional requirements for BESS, such as connection scheme, choice of switchgear, normal operating range, immunity to disturbance, active power response to frequency deviation, reactive power response to voltage variations and voltage changes, EMC and power quality, interface protection, connection and start to generate electric power, active power management, monitoring, control and communication, and grid-connected tests.

The stationary BESSs considered within the scope of this document include electrical forms such as lead-acid, lithium-ion, liquid flow and sodium-sulfur batteries, interconnected to medium voltage (MV) or low voltage (LV) distribution networks via bidirectional DC to AC power converters. This document will specify active and reactive power response and grid-connected testing for distributed BESS, as a supplement for IEC TS 62786-1:2023.

This document specifies interface requirements for connection of distributed BESS with the distribution network operating at a nominal frequency of 50 Hz or 60 Hz.

NOTE Mobile electrical energy storage devices (e.g., electrical vehicles) are under consideration for future editions.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TS 62786-1:2023, Distributed energy resources connection with the grid – Part 1: General requirements

IEC TS 62898-2: Microgrids – Part 2: Guidelines for operation